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Abstract 
 
The goal of this paper is to present a variety of applications 
of matrix-analytic methods (MAMs) and phase-type (PH) 
distributions to logistic models with random variables. We 
first provide an overview of different types of PH 
distributions as advanced analytic techniques for the solution 
of non-Markovian state-space based models. In the latter 
part of the paper, we illustrate these techniques by means of 
some logistic examples dealing with exponential and non-
exponential stochastic processes and random values. The 
ultimate goal of this paper is to provide a reference for 
logistic researchers and students in state-space modeling.  
 
Keywords: matrix-analytic methods,  phase-type distributions, 
logistic problems, modeling. 
 
 
1. INTRODUCTION 
 
Logistic planning and management largely focus on 
problems of material flows in transportation systems. The 
very complex processes of transport, within the material 
flow analysis, are usually represented by simple models in 
order to find solutions to practical problems. Processes in 
real material flow systems, the movement of transport units 
or changes in inventories at warehouses, can be modeled as 
changes in characteristic system values over time. These 
system values can be interpreted as random variables and 
their changes over time as stochastic processes. In this 
sense, discrete and continuous probability distributions are 
the basis for analytical study and simulation of 
transportation processes with dynamic behavior. 

The most important random variables in a material flow 
analysis, as a major category of logistics processes, are:  
• results in time intervals, for example number of 
transportation orders, number of operating cycles for a 
period, total number of failures, number of transportation 
units necessary for the movement of the product, number of 
arrivals per unit time, etc.,   
• time interval between events, for example interarrival 
time, sojourn time, service time,  waiting time in front of 
server, time gaps, lead time and cycle time, etc.,   
• distance traveled during a time interval, for example 
length of road of FTS vehicles or trucks in external 
transport, length of transportation networks, etc.,   
• the amount of material to be handling in a given time 
interval, for example in the manufacture and storage of 
goods in distribution centers of logistics chains, etc [1]. 
In general, random variable can be defined as a numerical 
outcome that results from an experiment. Discrete random 
variable can take on only a finite or countably infinite set of 
outcomes (the first group of the above examples - total 
number of failures). On the other hand, continuous random 
variable can take on any value along a continuum or infinite 
set of outcomes (the second group of the above examples - 
interarrival time). 
In view of the above presented facts that changes in 
characteristic system values over time have stochastic 
character, effective managing of logistics processes, 
particularly in terms of optimization, requires the 
involvement of probability theory and stochastic process, as 
well as reliability theory. On this basis, it is possible to 
define appropriate mathematical models that would 
adequately interpret complex logistic processes and that are 
very important for optimal system management. 
 
2. LOGISTIC PROCESS WITH NON-
EXPONENTIAL BEHAVIOR 
 
In modeling different logistic processes the basic idea is to 
graphically describe the real-time dynamical evens or flows 
by state-space diagrams that may be further transformed into 
mathematical models for which solution mathematical tools 
and procedures are well known. A standard form for state-
space diagram is directed graph or digraph G(V,E) 
composed of the following elements V –  set of nodes 
(vertex) and  E – set of edges (links between vertices). Nodes 
represents the different states of the domain (i.e. cities in the 
transportation problem) and edges represents the transitions 
from a state to another. Each edge is a pair (i,j), where i and j 
belongs to V. If the edge pair is ordered, the edge is called 
directed and thus the graph is directed graph. Otherwise, the 
graph is called undirected and it's rarely encountered in usual 
logistical problems. Very often, an edge has a component 
called edge cost (or weight). 
It is generally known that the state-space diagram can be 
simply represented by Markov processes (a kind of a 
stochastic processes) if transition probabilities, from a state to 
another, have constant values (do not depend on time) and if 
future states of the system depend only on the present state 
(not on any past states).  This means that the time spent in a 
state i, before the system moves to the next state j, takes non-
negative real values and has an exponential distribution which 
further defines transition probability, from state i to state j as: 
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where E(t) denote expected value of the time spent in state i. 
If it's necessary to model random variables (processes) which 
are characterized by general distribution (non-exponential) 
functions, such models are called non-Markovian. This class 
of models can be solved using several different approaches: 
• Markov renewal theory [2] 

- Markov renewal sequences, 
- semi-Markov processes 
- Markov regenerative processes, 

• method of additional variables [3], 
• matrix-analytic methods (MAMs) and their part phase-
type (PH) distributions [4]. 
The most important advantage of using PH distributions is 
their mathematical tractability, which is primarily reflected 
in the possibility of approximation of arbitrary continuous 
probability distributions with arbitrary precision. Namely, 
an increase in the number of phase (stages) causes an 
increase in precision of approximation. In contrast, the 
application of additional variables method or Markov 
renewal theory is very limited in practical problems [5].  
The fact that some general distribution or an empirical data 
set can be approximated by two or more exponential 
distributions is very often used in logistic models where 
transition processes have non-exponential behaviour. 
 
3.  MOSTLY USED CONTINUOUS PHASE-
TYPE DISTRIBUTIONS 
 
PH distributions are based on the method of stages 
technique introduced by A. K. Erlang (1917.) [6] and later 
(1981) generalized by M. F. Neuts [4]. Since their 
introduction PH distributions have been used in a wide 
range of stochastic modelling applications in different areas 
such as: telecommunications, finance, biostatistics, 
queueing theory, reliability theory, survival analysis, etc 
[7]. Neuts defined PH distribution as the distribution of the 
time until  absorption in a Markov process with a finite 
number n of transient states and one absorbing state, state 
n+1 [4]. The key idea is to model random time intervals 
(with  non-exponential distribution) as being made up of a 
number of exponentially distributed segments and to exploit 
the resulting Markovian structure to simplify the analysis. 
Let X(t), t ≥ 0, be a time-homogeneous Markov process 
with discrete state space {1, ..., n, n+1} and infinitesimal 
generator (hereinafter only generator) : 
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where  is a n×n square matrix (generator restricted to the 
transient states),  column vector and 0 row vector  of 
order n. The initial probability vector of process X(t) is 
denoted by ά = (, n+1) where  is a row vector of size n. 
The states {1, ..., n} are referred to the transient states and 
n+1 is an absorbing state. Let Zinf {t ≥ 0 : X(t)  n+1} be 
the time until absorption of the process X(t) in state n+1. 
The distribution of Z is called phase-type (PH) distribution 
with parameters  and and is denoted by PH(). 

Dimension n of matrix is order of PH distribution and 
represents the number of phases or stages. The basic 
distributional characteristics of PH distribution (the 
cumulative distribution function (3), the density function 
(4) and the rth moment (5)) are: 
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where e = (1,...,1)T is a column vector of ones and r is 
ordinal number of a moment. 
According to form of  matrix  and initial probability 
vector it is possible to classify different types of PH 
distributions: exponential distribution (one phase PH 
distribution), Erlang distribution (two or more identical 
phases in sequence), hypoexponential distribution (two or 
more non necessarily identical phases in sequence – series 
connection), hyperexponential distribution (two or more 
non necessarily identical phases - parallel connection), 
Coxian distribution (two or more not necessarily identical 
phases in sequence, but with a probability of transitioning 
to the absorbing state after each phase), etc.   
The basic indicator in selecting one of these distributions to 
represent a non-exponential distribution is the coefficient of 
variation. The coefficient of variation CV is a measure of 
deviation from the exponential distribution (CV = 1) [5]. 
Table 1 shows the intervals of the coefficient of variation 
for some types of PH distributions. 
 
Table 1 Koefficient of variation for some types of PH 
distributions 

coefficient of 
variation CV 

Type of PH distribution 

> 1 hyperexponential 
1 exponential 

< 1 hypoexponential 
0 deterministic distribution 

 
PH distributions capture a wide range of statistical 
characteristics including high variability. Note that PH 
distributions do not capture long-range dependence or self 
similar behavior. There is another set of processes known 
as Markovian arrival processes that are still based on the 
method of stages and capture long-range dependence in a 
data set. PH distributions are a special case of Markovian 
arrival processes [8]. 
The following probability distributions are considered as 
special cases of a continuous PH distribution. Moreover, 
each of them has been used widely in literatures. 
 
3.1 Exponential distribution  
 
Exponential distribution is one of the most important 
continuous theoretical distribution which describe many 
natural phenomena. The density function of exponential 
distribution is: 
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where parameter  determines the "rate" at which events 
occur. The cumulative distribution function is defined as: 
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In general, any exponentially distributed random variable 
t∼Exp(λ), with parameter  has the following properties:  
• expected value    E(t) = 1/ 
• moment about zero    mr = r!/r, 
• variance      Var(t) = 1/2, 

• coefficient of variation   CV = 1, 
• skewness     3 = 2, 
• kurtosis      4 = 6, 
• transient generator     = [ – ]. 
It is easy to observe that an exponential distribution is also 
a phase-type distribution which has only one phase. 
Consequently, processing time till the absorbing state is  
just moving from initial state to the absorbing state. 
Exponential distributions dominant feature is "ease-to-use" 
character in practical engineering situations. Applying the 
exponential distribution is relative simply in stochastic 
modeling because there is only one parameter λ. The great 
significance of this distribution is in the fact that it is unique 
continuous theoretical distribution with so called memory 
less property. The memory less property enables simple 
expressions for many performance measures of stochastic 
logistic models. The third important feature of exponential 
distribution is its relation to the Poisson distribution. This 
distribution is used to measure the time intervals between 
events according to Poisson process.  
Exponential distribution has many important features that 
often provide analytical solutions of the problem. On the 
other hand, it is not always the ideal approximation of the 
observed phenomena in nature. Coefficients of variation of 
many important processes and random variables have 
values which are significantly more or less than one. This 
means that it is necessary to define some other PH 
distributions which can be better approximation of non-
exponential processes. 
 
3.2 Hypo - exponential distribution 
 
Hypoexponential distribution or generalized Erlang 
distribution is the probability distribution of time to 
absorption in Markov process with two or more non 
necessarily identical, series-connected, exponentially 
distributed phases (states). The continuous, non-negative 
random variable t∼Hypo(k, λi) has hypoexponential 
distribution if its density function has a form: 
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where k is the number of phases and i is transition rate 
from the i-th phase. The cumulative distribution function is 
defined as: 
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Figure 1 shows a state transition diagram – graph of 
hypoexponential distribution. 
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Fig. 1 State transition diagram of hypo - distribution 

Random variable t∼Hypo(k, λi) has the following 
properties: 
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• initial probability vector    = (, , ..., ). 
While the Erlang distribution is a series of k exponential 
distributed phases all with rate λ, the hypoexponential is a 
series of k exponential distributions each with their own rate λi.  
 

 
 

Fig. 2 State transition diagram of Erlang distribution 

As a result of that, Erlang distribution can be considered as a 
special case of the hypoexponential distribution. 
 
3.3 Hyper - exponential distribution  
 
Hiperexponential distribution is the probability distribution 
of time from initial state to absorption in Markov process 
with two or more non necessarily identical, parallel-
connected, mutually exclusive, exponentially distributed 
phases (states). The continuous, non-negative random 
variable t∼Hyper(k, i, λi)  is distributed according to 
hyperexponential distribution if its density function is 
defined as: 
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where k is the number of phases, i is transition rate from 
the i-th phase and i is probability of transition to the i-th 
phase (component of initial probability vector). The 
cumulative distribution function is defined as: 
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Figure 3 shows a state transition diagram – graph of 
hyperexponential distribution. 
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Fig. 3 State transition diagram of hyper - distribution 

Random variable t∼Hyper(k,i, λi) has the following 
properties: 
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• coefficient of variation   CV > 1, 
• skewness     do not exist in closed form 
• kurtosis      do not exist in closed form 
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• initial probability vector    = (1, 2, ..., k), . 
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The hyperexponential distribution exhibits more variability 
than the exponential (CV > 1). Typical examples of 
application are CPU service-time distribution in a computer 
system and the failure density of a product manufactured in 
several parallel assembly lines which outputs are merged.  
 
4. MATRIX-ANALYTIC METHODS FOR 
MODELING GENERALLY DISTRIBUTED 
TIMES IN LOGISTIC SYSTEMS 
 
Recent applications of matrix-analytic methods in queueing 
theory, reliability and availability, telecommunications, 
civil engineering, finance, computer science [9], among 

others, shows the power of these techniques in different 
areas. In this paper we focus on the applications of matrix-
analytic methods in two very importante areas and we 
present the concepts and the modeling approach of real-life 
logistics problems. 
 
4.1 Matrix-analytic methods in queuing theory  
 
The first example is model described in the paper 
Application of the Markov theory to queuing networks by 
Petrovic et al. [10]. This paper presents an application of 
the matrix-analytic methods to the model of networked 
transport system which consists of two subsystems, namely 
PS1 i PS2 (Fig. 4). Transport units (TU) enter subsystem 
PS1 and are processed. In part they depart from the system, 
while partly, they come to the second subsystem PS2. At 
the entrance of the subsystem PS2 the units coming from 
the outside are included too. After being processed in 
subsystem 2, the units depart from the system. The aim is to 
determine average number of transport units in each 
subsystem as well as average time of keeping the unit 
within each subsystem. 
 

 
 

Fig. 4 Model of Real Transport System 

Number of transport units entering subsystems PS1 is 
modeled by Poisson’s distribution with parameter 1, while 
the TU processing time in subsystem PS1 is defined by 
exponential distribution with parameter 1. Number of TUs 
departing from the system is defined by parameter q1,0, 
while the number of units entering into queue of subsystem 
PS2 is defined by parameter q1,2. The queue of subsystem 
PS2 also includes the units coming from the environment 
by Poisson’s distribution with parameter 2. TUs leave 
subsystem PS2 after the processing which is defined by 
exponential distribution of service time with parameter 2. 
Thus defined numerical example represents an open 
network of the queuing system for whose modeling 
methodology described in previous sections is applied. 
The set model represented in the form of the graph of states 
is given in Fig. 5. If the capacity of both subsystems PS1 
and PS2 are S1=S2=5 then the transient generator matrix 
gets the form shown by expression 13, where -i represents 
negative sum of all the elements in i-th row. Also, initial 
probability vector has a form: 
 
 = (, , ..., ).        (12)



 
 

Fig. 5 Model represented in the form of the graph 

=  

  (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (0,2) (1,2)  ...  (4,5) (5,5) 

            (13) 

                     
(0,0)  -1 1 0 0 0 0 2 0 0 0 0 0 0 0 

... 

0 0 
(1,0)  q101 -2 1 0 0 0 q121 2 0 0 0 0 0 0 0 0 
(2,0)  0 q101 -3 1 0 0 0 q121 2 0 0 0 0 0 0 0 
(3,0)  0 0 q101 -4 1 0 0 0 q121 2 0 0 0 0 0 0 
(4,0)  0 0 0 q101 -5 1 0 0 0 q121 2 0 0 0 0 0 
(5,0)  0 0 0 0 q101 -6 0 0 0 0 q121 2 0 0 0 0 
(0,1)  2 0 0 0 0 0 -7 1 0 0 0 0 2 0 0 0 
(1,1)  0 2 0 0 0 0 q101 -8 1 0 0 0 q121 2 0 0 
(2,1)  0 0 2 0 0 0 0 q101 -9 1 0 0 0 q121 0 0 
(3,1)  0 0 0 2 0 0 0 0 q101 -10 1 0 0 0 0 0 
(4,1)  0 0 0 0 2 0 0 0 0 q101 -11 1 0 0 0 0 
(5,1)  0 0 0 0 0 2 0 0 0 0 q101 -12 0 0 0 0 
(0,2)  0 0 0 0 0 0 2 0 0 0 0 0 -13 1 0 0 
(1,2)  0 0 0 0 0 0 0 2 0 0 0 0 q101 -14 0 0 

  
... ...  

  
(4,5)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
-35 1 

(5,5)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 q101 -36 

 
4.2 Phase-Type Distribution for modeling failure rate 
function  
 
The problem analized in reference [9] is shown here as the 
second example of matrix-analytic methods in logistics. In 
order to study system performance throughout its life cycle, 
method of multi – state degradation analysis was introduced 

[11]. Degradation is a continuous random process in time, 
and generally, it can be modeled by a continuous 
probabilistic function. However, in practice, the description 
of the system operating (technical) condition is 
accomplished through a finite number of system states, and 
hence, the continuous degradation path is simplified by 
dividing it into a number of different discrete states [12]. 



 
 

Fig. 6 System degradation path: 
Di – degradation states, F1 – degradation failure 

Degradation state Di (degradation level or  cluster) can be 
introduced as a system state with relevant technical conditions 
at similar level of operating ability. Because of that, failure rate 
function has close relationship with degradation process and in 
a specific degradation level, system failure rate is assumed to 
have a constant value i, i=1÷nD. The final area (degradation 
level nD) represents the state of the system with a strong 
increase in failure rate function (approximated with value nD) 
when the degradation failure F1 occurs. Time to degradation 
failure F1, in mathematical sense, represents the generalized 
Erlang or hypoexponential distribution as a special case of PH 
distribution. The last process necessary to complete the model 
is replacement/repair of failed system. After degradation 
failure the system will be replaced or repaired to a state D1 
which is “as good as new” state. Time of replacement or repair 
is exponentially distributed E(1). If corrective maintenance 
time, after degradation failure, is not exponentially distributed, 
process can be modeled (similarly to degradation process) as 
another hypoexponential distribution. The aim is to determine 
working state probabilities (availability) as well as probability 
of failure state. 
The transient generator matrix () and initial probability 
vector (), for system degradation model through nD states, 
with degradation failure and corective maintenance can be 
represented expressions (14) and (15) respectively: 
 













































11

22

11

0000000

0000000

...

...

000000

...

...

0000000

0000000









DD nn

iiΘ  ,

          (14) 
 = (, , ..., ).        (15) 
 
5.  CONCLUSION 
 
Markov models are a well known modeling technique in 
industrial and academic applications. Aim of this paper was 
to present applications of matrix-analytic methods and phase-
type distributions to logistic models with random variables. 
The presented methodology enables a rapid increase in the 
size of the problems that can be effectively handled by 
Markov models. It offers a new possibility of dealing with 
non-exponential processes and variables.  Matrix-analytic 
methods and phase-type distributions represents flexible and 
effective modeling method and the author's intent is that 
this paper will be an encouragement to  logistic researchers 
and students in state-space modeling. 
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